
Essentials of Software Development for the Post-Agile World

1

THE GEODESI C
MANIFESTO

Essentials of Software Development
for the Post-Agile World

Bob Erickson

Essentials of Software Development for the Post-Agile World

2

Copyright © 2019 by Robert J. Erickson. All Rights Reserved. No part of this book may

be reproduced in any form or by any electronic or mechanical means including

information storage and retrieval systems, without permission in writing from the

author. The only exception is by a reviewer, who may quote short excerpts in a

review. Also excepted is the text of the manifesto in section 1.4, which is in the public

domain.

Contact me at bob@GeodesicManifesto.com.

This first edition needs feedback. Contact me with your comments or visit my blog at

https://www.GeodesicManifesto.com. I would appreciate honest reviews on

Amazon, or anywhere else reviews are posted.

Many of the designations used by organizations to distinguish their products and

intellectual property are claimed as trademarks. Where those designations appear in

this book, and the author was aware of a trademark claim, the designations have been

printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors

or omissions or for internet links that have changed since publication. No liability is

assumed for incidental or consequential damages in connection with or arising out of

the use of the information or programs contained herein.

mailto:bob@GeodesicManifesto.com
https://www.geodesicmanifesto.com/

Essentials of Software Development for the Post-Agile World

3

1 BRIDGES TO SOFTWARE

Humankind has built bridges for thousands of years. I don’t mean the metaphorical

bridges that span the gap across our political divide; I mean real bridges that make it

possible to walk across water without getting that squishing sound in your Converse™

high tops. In Paris there are 37 bridges across the Seine. In London, 32 bridges across

the Thames. There are dozens of bridges that cross the Rubicon. We build rope bridges,

stone bridges, suspension bridges, railway trestles, and covered bridges with year-

round autumn foliage. We build bridges over rivers, canyons, lakes, railroads, roads

and the English Channel. Whoops! that’s a tunnel.

Bridges don’t fail.

OK, occasionally they fail, but we can name the failures because they are so rare: the

spectacular Tacoma Narrows bridge failure (look it up on YouTube if you haven’t seen

it); the Interstate 35W bridge in Minneapolis; the San Francisco Bay Bridge (but there

was an earthquake involved). And London Bridge has been “falling down, falling

down” for ages. Bridge failures make the news.

But mostly, they don’t fail. Cars, trains and people cross them every day without a

moment’s thought concerning whether this will be their last crossing. If they’re about

to fail, the authorities close the bridge until it can be repaired. If we measured bridge

failures compared to the number of crossings, it would be in the parts per billion. Or

less.

Software fails every day.

Like bridges, there are big failures that make the news – the Facebook and Yahoo data

breaches, for example – but mostly, software failures are so commonplace we hardly

notice them. When our Words with Friends™ app suddenly quits, or our PC

spontaneously reboots, or Excel™ freezes in the middle of a calculation, we shake it

off, briefly wonder if it was something we did, and then start over, hoping we can pick

up where we left off. The coffee machine at the office reminds me every day – I push

the buttons for a double decaf (I know – why bother?), the machine pours the first shot,

then displays “Ready. Take your Cup,” while proceeding to pour the second shot. I

guess the decaf QA engineer was too sleepy to notice.

Why is software so bad? Do we need thousands of years of practice before we can get

it right? Or is there something inherent in the software problem that makes it harder

than building bridges or cars or airplanes? More practice will help, but the software

problem is exceedingly more complex than bridge design. And in many cases, the

economics don’t make it worthwhile to build better software. And software is so easy

Essentials of Software Development for the Post-Agile World

4

to change that it’s never complete and the next version isn’t better, just different. And

as the software system grows, it becomes harder and harder to make the next version,

until finally we give up and start over, knowing that we have the same chaotic life cycle

ahead.

In this book, I will explore the problem of software development – not from an

academic perspective, but from the viewpoint of someone who has spent thirty-plus

years immersed in software development. My career has gone back and forth between

software development and software management, and with each transition, I have

learned more about what I should have done better in my previous role. I have made

a lot of mistakes and I learned from that. I have done a few things right and I learned

from that. I have seen it done well and I’ve seen it done poorly, and I learned from that.

And I learned from writing this book – the act of expressing your ideas will often lead

to better ideas.

This is not a book about how to write code – there are plenty of those and I have nothing

significant to add. This is not a book about algorithms – how could I hope to out-

algorithm Donald Knuth?

This is not a book about Agile, which is an incomplete and often inadequate way of

thinking about software that has caught our attention because the Old Way was so bad,

and because the founders chose a perfect name. I will play the role of the guileless boy

in The Emperor’s New Clothes who is the only one with the audacity to declare that the

Emperor is naked.

I propose a new manifesto, the Geodesic Manifesto, that supplies a wardrobe for the

Agile vision and addresses the problems that have blocked the way for many Agile

hopefuls. The Geodesic Manifesto forms the backbone of this book. It’s short – fits on

one 8½ x11 page, but it’s dense, with many concepts that take long chapters to describe.

This is a book about why. This book discusses how to think about software. It sets

forth several models for evaluating software development and discusses the

philosophy I have forged during my career for how to apply those models. It looks at

many facets of the problem of software development and attempts to abstract each

facet into a few key concepts.

After you’ve read the book, you will be able to apply the concepts to your own software

problem, or at least console yourself with the knowledge that you have a very hard

problem. If I could give this book to my twenty-five-year-old self, the entire course of

history would have changed. A little.

This book is targeted at anyone who wants to improve how software is developed.

Managers will learn about leading their team but also about designing architectures

and solving challenging problems. Developers will learn about development processes

and their role in the organization.

Essentials of Software Development for the Post-Agile World

5

For the structure of this book, I have chosen this conversational, first-person style. The

“you” I am talking to is usually a software manager, but sometimes you’re a software

developer. I’ll try to make it clear when I switch.

The book has a main set of sections that discuss facets of the software problem, and,

interspersed throughout the text, are sections that I label “Non-Sequitur” that consider

related topics that are only loosely connected to the main sections. You can skip these

if you want or read them in a different order or you can skip the main thread and only

read the non-sequiturs. If you bought, borrowed or stole the book, I thank you. You

owe me nothing more.

Each chapter starts with a non-sequitur and concludes with a “Key Concepts” section

that reviews the material in the chapter and provides cross references back to the

discussion. The book is heavily cross-referenced using hyperlinks. If you’re reading on

paper, you’ll have to traverse the hyperlinks the old-fashioned way – use the index.

In this chapter, I will introduce some of the key concepts that serve as background for

the rest of the book. Some concepts are pervasive in software development such as

requirements and a brief overview of graph theory. I present three models for

understanding software that later chapters will reference frequently. I present the

Geodesic Manifesto and provide a brief explanation with references to further

information in the rest of the book Finally, I list the characters in this story.

A Note on Gender

For years, the pronoun ‘he’ represented a person of unspecified

gender when its antecedent was a person of unspecified gender. In

the sixties this usage started to unravel as women rightly objected

to the default masculine pronoun. Over the last fifty years we have

become increasingly aware of gender to the point that today even

assuming that there are only two genders can trigger objection.

But the English language has not evolved. The only singular

pronoun with unspecified gender is ‘it’. You and I would both

object to being referred to as ‘it’. Common usage is evolving to use

the word ‘they’ as a singular pronoun referring to a person of

unspecified gender. I’m sorry, but the training I received from Sister

Eucharia’s ruler and Mrs. Hurd’s red pen is too deeply embedded

for me to adopt that usage. So, until we add a new pronoun (I

recommend the word ‘che’, rhymes with ‘the’), I’m stuck.

So, when I have to use a singular pronoun to refer to a person, I

randomly choose one of my fictional characters: Jack and Jill, Bonnie

and Clyde, or Victoria and Albert. Then I use ‘she’ or ‘he’ as

appropriate. I hope you can abide that.

Essentials of Software Development for the Post-Agile World

6

1.1 Non-Sequitur: Lessons from “The Imitation Game”

Part of my inspiration for this book came from the movie, “The Imitation Game”. After

watching it, I felt sympathy for Commander Denniston, the poor bastard who was

responsible for managing the team of mathematicians, chess masters and puzzle

solvers breaking the German Enigma code at Bletchley Park during WWII. Alan

Turing, the brilliant mathematician, played by Benedict Cumberbatch, has built a

machine that he claims is Britain’s best hope to crack the code. The machine

impressively whirrs and spins and ka-chunks away but has yet to crack a single coded

message. Commander Denniston, played by Charles Dance, is the frustrated manager

of this early software project. Of course, he doesn’t call it software because the word

wasn’t applied to computer code until much later, but it has all the earmarks of a

software project:

• It’s late.

• No one can predict when it will be done.

• All previous predictions have been wrong.

• No one can define the next milestone – in fact, no one thought to ask.

• The system architect (Alan Turing) is a notoriously poor communicator.

Commander Denniston is a successful leader trained in Britain’s military. He is an

expert in command-and-control organizations and in logistics. He expects that when

he gives an order it will be obeyed. He considers that all members of his staff are

equivalent -- after all, one soldier is much like another. In fact, uniformity is a

requirement; a soldier who is different will infect the entire brigade. The discipline of

the British military formed the backbone of the Empire.

Now he finds himself in charge of a mission that everyone thinks is impossible. He has

a few thousand people intercepting and decoding messages one by one, and he has a

small team trying to break the code. He has never encountered anything like this,

where the best efforts of his staff are inadequate to carry out his orders. Command-

and-control organizations depend on the leader’s understanding of the strategy. The

strategy of applying a machine to defeat another machine is not part of his training. He

does what he was trained to do – when things aren’t going well, he goes back to basics.

He pounds the team with the only hammer he knows – he issues orders. First, he

delivers a deadline ultimatum. When that fails, he turns to the time-honored tactic of

finding someone to blame.

Alan Turing does not match Commander Denniston’s idea of a soldier. Turing is not

like anyone else, and is not deferential to his commanding officer. Turing’s

idiosyncrasies both annoy and baffle the commander, and his best model for

understanding Turing is a soldier who drinks too much or goes AWOL. The accepted

standard for dealing with such a soldier is to throw him in the brig, and if the bad

behavior continues, discharge him. So, he tries to remove Turing from the project.

Essentials of Software Development for the Post-Agile World

7

Which brings us back to the earmarks of a software project.

• The manager does not understand the computer, the mathematics behind
the solution or the architecture of the system.

• His best tactics for improving things are to re-organize and to apply more
brute force, a strategy that clearly (at least in hindsight) can only make
things worse.

• He also employs the oft-failed strategy of setting an impossible deadline.

Despite all this, the project succeeds because upper management (Winston Churchill)

believes that the best hope is to put the cleverest man in England on the problem, and

because the team, fueled by ale and shepherd’s pie finds the required breakthrough at

just the right time to save the movie and win the war.

Poor Commander Denniston! If only he had read this book, he would have learned:

• That a clear vision and an empowered team are more effective than
uninformed orders

• Why software projects are complex and how to overcome their inherent
difficulties

• The importance of software architecture and methodology

• How to help the cleverest man in England come to that breakthrough as
soon as possible

1.2 Requirements

The term ‘requirements’ is ubiquitous in the realm of software development. So, before

I start bandying about the word, let’s discuss what requirements are, where they come

from, and how seriously we need to worry about them.

Requirements are statements about what the software needs to do without regard to

how it does it. The term has been used in software development for a long time, and,

as you might guess, there are various factions about how precisely they should be

specified and how important they are to the development process. I have seen

requirements documented with many pages of numbered and cross-referenced

statements. I have seen requirements summarized in one PowerPoint slide with big

font. Neither of those extremes meets the needs of software development.

The term ‘requirement’ implies ‘necessity’, but if some of the requirements are not met

at the time we need to ship, we will ship anyway. The requirements are really

guidelines with degrees of necessity. I would prefer to use the term ‘capability’ instead

of ‘requirement’, but the term is so ingrained in the culture that I will continue to use

it with this modified definition.

Essentials of Software Development for the Post-Agile World

8

Some requirements are truly critical, and some are so peripheral that only left-handed

aardvark keepers need them. Most are somewhere in between. Any product has sets

of requirements that are sufficient – multiple sets, because {a,b,c,d} might be sufficient,

but also {a,b,e,f}. Agreement on which sufficient set is the primary implementation

target is important for the development team.

Some requirements are Boolean – either met or not met, for example, accepting a

specific input file format. Other requirements are parametric, with a measurable

attribute, for example, the time it takes to process a transaction. Requirement authors

often try to transform parametric requirements into Boolean requirements by

specifying a threshold. But don’t believe it, that threshold is fuzzy at best and will

continually move toward zero or infinity, whichever is harder to implement.

Requirements are essential to guide the development team. They define what

developers will implement. They help the team set priorities. They guide testing. They

provide a vocabulary for the team to use when talking among themselves and with

customers.

But because requirements are written in natural language, they are ambiguous. A

developer needs to interpret the text and implement the requirement into code. Once

implemented, the ambiguity is gone, but there is no guarantee that the developer’s

interpretation matches what the user meant. Add to that the high probability that the

implementation has bugs, and you can see where quality problems come from.

The most common way of reducing requirement ambiguity is to break down

requirements into a set of user stories. For example, the requirement for a C++ compiler

to have clear error messages – a very ambiguous statement – might include this user

story:

• When code illegally references a private member of a class, I want to see
both the calling code and the declaration of the private member.

This is a much less ambiguous statement. The clear-error-message requirement might

break down into hundreds of these user stories. Although ambiguity is reduced by the

user stories, there is no guarantee that the set of stories completely covers the

requirement.

Because requirements are often wrong, and always incomplete, software developers

must continually make uninformed guesses to answer the question, “What would the

user want?” The best practice is for developers to learn to think like users. Then the

question transforms to “What would I want?” which is much easier to answer.

Old-style software development expected requirements that were supposed to

magically appear at the exact moment they were needed with answers to any question

that might be posed. Should I make the Grpbxtz widget configurable? The requirements

Essentials of Software Development for the Post-Agile World

9

were called “Marketing Requirements” although no one in the Marketing Department

would ever use the product. For years, I tried unsuccessfully to get my teams to call

them “Market Requirements,” and to instill the notion that everyone is responsible for

understanding the market. But the term lived on and they continued to be late and

inadequate, and I continued to get questions like, “Why can’t Marketing tell me the

marginal benefit of the Grpbxtz widget?” And I wanted to reply, “Because they haven’t

got a clue. No one has a clue. And they’re busy putting lipstick on the pig you shipped

last year! Just make it configurable.” But I didn’t.

One of the key outcomes of the Agile revolution is that we now recognize that it is

impossible to know the complete set of requirements at the beginning of the project. It

may be impossible ever to know them. But we need something to guide the team, so,

the team should make the best guess they can about the requirements using whatever

resources are available, and they should assume the requirements are wrong. Later

when they have limping software, they can get feedback from users, refine the

requirements and feed the new requirements into the product development.

Assuming the requirements are wrong is the best assumption the team can make. First,

it’s unlikely that the team can guess the requirements out of thin air. But more

importantly, it creates a mindset that whatever software they write will need to adapt

quickly as they discover better information about the requirements.

Since the requirements are wrong, anything that depends on the correct, complete

requirements, will also be wrong. In particular, early estimates of software schedules

and development cost will always be optimistic because so much of what’s needed has

yet to be defined.

The requirements need to be pretty good by the time you release the system or you run

the risk of shipping a Clydesdale when you needed a thoroughbred.

1.3 Models for Software Development

Software development is complex, and every development project is different. But

there are common themes that apply to all projects. The synthesis of those common

themes into models helps us to understand our complex problem.

A model is a metaphor for some aspect of the whole. A good model helps you

understand one or more facet of the problem at hand and guides you to make good

decisions.

Unfortunately, software development is too complex to be guided by a single model.

In the following sections, I present three models for software development:

Essentials of Software Development for the Post-Agile World

10

• The Yin-Yang Model explains why software development is difficult, and
gives some guidance on how to combat the forces of evil that cause software
problems.

• The Software Thermodynamic Model draws a parallel with classic
thermodynamics and explains how software rots.

• The Complexity Model explains how to characterize a software
development problem and the best method for solving that problem.

These three models, plus the Geodesic Manifesto that follows this section, form the

backbone of the book, which will often refer to them.

1.3.1 The Yin-Yang Model

Software development reflects the classic battle between Good and Evil, light and dark.

The forces of Evil do everything they can to make development difficult. But with

courage and perseverance, the forces of Good can improve the process and help you

create better software sooner.

In this section, I introduce six pairs of Yin-Yang terms. One side of the pair, the Yin,

refers to an Evil feature of software that makes the problem hard, and the other side

refers to its Good counterpart. Sometimes you can make a conscious tradeoff between

them, but often the dark side dominates and your job is to minimize its impact.

1.3.1.1 Complexity vs. Simplicity

Bridge-building is a complex undertaking. A bridge has lots of components - the

Golden Gate Bridge has over a million rivets. Bridges interact with the environment –

painting the Firth of Forth Bridge took almost 30 years. They often need to be enhanced

while remaining open to traffic – widening of a local bridge took over a year, but it was

closed for just a few hours.

Software is complex. A typical system depends on thousands of code statements,

sometimes millions. A bridge may have a million rivets, but there are only a few

different types of rivets. Every code statement is unique. Each of those statements

interacts with other statements, sometimes directly but often indirectly, in ways that

are not readily apparent.

To implement that complex system, you need a complex organization of developers,

software validators and many others. Coordinating all these activities is also complex.

While there’s nothing you can do about the fact that you have a lot of code to manage,

you can impose simplicity to parts of the code and to the process of creating it. You

manage complexity with Architecture, that organizes code statements into manageable

chunks, and with Methodology, that provides processes and guidelines for the

developers who write those statements.

Essentials of Software Development for the Post-Agile World

11

In the section The Complexity Model of Software Development, I will offer a pseudo-

formal definition of complexity. Much of the book is dedicated to discussions of

architecture and methodology.

1.3.1.2 Opacity vs. Visibility and Clarity

Golden Gate Bridge, from Lincoln Park, San Francisco, California

When I look at the Golden Gate Bridge, I can see how it was built. Its two massive

towers of steel and concrete provide the bases of support. The main cables are anchored

in concrete at both ends. The suspension cables hang from the main cable and support

the roadway. If I move closer, I can see the rivets that hold the steel together. Even

though some parts of it are encased in concrete, or hidden from view, it’s clear that the

design and the embodiment of the bridge are similar.

Software is opaque. The embodiment of a software system is extremely different from

the code that implements it. By observing what it does and how it operates, I can only

guess at the high-level architecture of the system. And the details are completely

obscured.

The opacity of software makes it difficult to diagnose problems. What you can observe

is a mere shadow of the cause of the problem. Not even a shadow – the thermal profile

of the shadow.

The opacity of software makes it difficult to enhance. Each enhancement must begin

by some developer coming to a new understanding of that part of the implementation

– even if that developer was the original author. The code may be unambiguous, but

the intentions and interactions are lost in the complexity of the software.

It takes work to overcome opacity with visibility. The purpose of software debuggers

is to provide complete visibility, but they’re only practical for use by developers. You

can add diagnostics that provide a window into the internals of the code; diagnostics

are useful for developers and validators. And you can make sure that your

architectures and processes encourage clarity of the code, again only useful for

developers.

When users encounter a problem, they are doomed to workarounds based on black

magic incantations.

Essentials of Software Development for the Post-Agile World

12

1.3.1.3 Vulnerability vs. Reliability

Bridge builders are acutely aware of what happens if a component fails. Wherever

possible, they avoid the possibility of a single point of failure – a place in the design

where a single component could fail and bring down the bridge. If a girder could be

held in place by two bolts, the designer might use four or six bolts to ensure it never

moves. If the designers can’t avoid having a single point of failure, like the towers of

the Golden Gate Bridge, then they overdesign those components.

Software is vulnerable. Every code statement is a potential single point of failure for a

software system, although the severity of the failure may range from annoying to fatal.

Since each code statement is written by a human, the likelihood of failure is significant.

To get high-quality software despite its vulnerability, we rely on testing through the

opaque interface. The opacity obscures the vulnerability so much that we can’t even

measure software bugs until after they have been observed. If a bug fails in the forest

of code without making any noise, then it doesn’t exist.

It is possible to build highly reliable subsystems, but the cost is very high, so only

critical subsystems, for example, the core of the Linux Kernel, can get the required

scrutiny. You need to identify the parts of your system that need extra attention and

come up with strategies that overcome the vulnerability.

Reliable software has few potential bugs lurking in the code waiting to happen.

Developing reliable software is the main theme of the chapter Software Quality.

1.3.1.4 Rigidity vs. Flexibility

As you drive down the interstate, you will observe that most bridges look alike. The

highway department has a few flexible designs that they reuse over and over. The

design process for a highway bridge is to choose the design type, and then to adjust

the parameters to adapt the design to the specific situation. Design reuse saves money

and time, and the highway department can concentrate on making those few designs

extremely robust.

It’s somewhat ironic that software, the most configurable thing in the world, is rigid.

Most software systems are built for a particular purpose and tested for that purpose.

Any attempt to use a piece of that system for another purpose is likely to expose

problems in the design or implementation. When requirements change, you can’t bend

the software to comply with the new information, you need to bolt on something new

because modifying the existing system will cause it to shatter.

Building flexible software subsystems that can quickly adapt to changes requires a

different mindset from the more common single-use development. You have to think

ahead to know what kinds of changes are likely, and then you need to design the

software to make those kinds of changes easy, even though you have no idea of the

details of those potential changes. Building flexible software may take a little more

Essentials of Software Development for the Post-Agile World

13

work at the beginning, but the payback could be huge because often the alternative is

starting over.

1.3.1.5 Chaos vs. Repeatability

At six AM, traffic sails across the San Francisco Bay Bridge. At seven AM, it crawls.

Somewhere between, a driver tapped the brakes, a bird hit a windshield, a gust of wind

pushed a car near the other lane. That perturbation, together with the increased

number of cars slowed traffic until later in the day when lighter traffic could clear the

bridge. But at seven AM, all you can see are a couple cars in front of you and you

wonder what happened.

Chaos theory studies the behavior of complex systems. In a chaotic system, cause and

effect are only loosely linked. The famous “butterfly effect” illustrates how a small

change in one parameter can lead to an enormous change in the later state of the

system.

In a deterministic system, if we know the entire state of the system it is possible to

predict the next state of the system. But most of the time, we can only observe a subset

of the state of the system, and so the next visible state often appears to be random. I

call this the “iceberg effect”. When we’re caught in a traffic jam, we tend to blame the

cars we can see, but they are victims the same as we are.

Software is chaotic; it is subject to the software butterfly effect and the iceberg effect.

Small changes to the software, or to the input data, can lead to big changes in the

resulting state of the system.

To clarify, chaos and complexity are not the same thing. Complexity refers to the code

itself and the process for creating that code. Chaos refers to the state of the system while

the software is running.

The software butterfly effect can have two kinds of manifestation. First, the final state

of the program’s data can be different. This is common in systems that use complex

numerical analysis or optimization algorithms. Second, the modified program state can

trigger bugs that have lain dormant for years.

Software users expect repeatability. When they do the same thing over and over, they

expect the same result; any other result causes insanity. The opacity of software hides

a lot of information from users. When you add the iceberg effect, sometimes software

can appear to be non-deterministic.

As an example, the other day, my wife was on the phone with a colleague reviewing a

complex spreadsheet used to manage the attendees at a Boy Scout adult training event.

They were each looking at the same file on their separate personal computers. My wife

referred to the “menu on the right.” Her colleague replied, “I don’t see that. I used to

see it, but I don’t anymore.” They spent a few minutes trying to figure out how to get

Essentials of Software Development for the Post-Agile World

14

that menu, and then gave up. Something in the state of their computers caused them

to see different results from the same input.

It takes thought and effort to overcome chaos to meet the expectations of users.

1.3.2 Software Thermodynamic Model

Usually, we think of software at the microscopic level, one code statement at a time. Of

course, that’s how we develop it and how we modify it. But the system will quickly

reach a level of complexity that will benefit from understanding it at a macro level. In

this section, I will draw an analogy between software and classical thermodynamics

that provides a useful model for understanding software, even though the

mathematical rigor is missing.

Classical Thermodynamics

Thermodynamics is a branch of physics that studies the behavior of systems that are

too complex to analyze at the component level. It relates heat and temperature to other

forms of energy and work. We may not be able to analyze a balloon full of helium at

the atomic level, but the statistical behavior of those atoms is consistent, and we can

treat the helium in the balloon as a single object with a temperature and pressure, and

use that macro-behavior to understand why the balloon rises.

Thermodynamics has four laws, numbered from zero to three. They start at zero not

because the scientists who formulated them were computer scientists, but because the

well-established laws (one to three) depend on a definition of temperature, so scientists

tacked on a zeroth law to rectify that omission. Here is a layman’s version of the laws.

In these laws, I distinguish between an object, which might be a balloon full of helium,

from a system, which includes all the objects in the limited universe of your

observations.

0. If two objects are each in thermal equilibrium with a third object, the two
objects are in thermal equilibrium with each other. By definition, two objects in
thermal equilibrium have the same temperature.
1. Energy can change forms, for example, from kinetic energy to heat energy,
but the total energy of a system never changes.
2. The entropy of a system never decreases. Entropy is a measure of the energy
of a system that has been lost to heat and can never be converted to another
form. It is analogous to disorder. A gas has more entropy than a liquid, which
has more entropy than a solid. It’s a measure of the energy that’s lost and no
longer usable.
3. At a temperature of absolute zero, an object has zero entropy. (It’s not
exactly zero, but zero is close enough for software.)

Essentials of Software Development for the Post-Agile World

15

Software Thermodynamics

Software changes every day. Bug fixes, enhancements, refactoring – they all contribute

to the continuous change. And after every change, there’s more code. The figure below

shows how the amount of code in the Linux Kernel has grown over time.

From https://en.wikipedia.org/wiki/Linux_kernel

With more code there are more bugs. If you search the web for “bugs per line of code”,

you will find various estimates from 0.1 to 50 bugs per thousand lines of code,

depending on lots of factors, including the difficulty of the code, the ability of the

developer, and the level of testing. The exact value of the number doesn’t matter except

that it’s not zero. More code means more bugs.

A useful metaphor is to think that all those changes increase the entropy of the

software. But we need to understand what entropy means in the context of software.

It takes work to create and maintain software. Let’s define a unit of work, the swerg (a

portmanteau of SoftWare erg), to be one staff hour of work – one average software

developer working for one hour.

A software module, some logical collection of code like a function, a class, a source file,

a library, etc., has some amount of latent work 𝑊𝐿 needed to make it meet the current

requirements of that module with zero bugs. Of course, the requirements will change,

but for the definition of latent work, assume the requirements are frozen. The latent

work includes work required to meet the requirements 𝑊𝑅 and work required to fix all

real and latent bugs 𝑊𝐵.

(1) 𝑊𝐿 = 𝑊𝑅 + 𝑊𝐵

https://en.wikipedia.org/wiki/Linux_kernel

Essentials of Software Development for the Post-Agile World

16

A real bug must be both triggered with the right conditions, and observed. A latent bug

is bad code that is waiting for the trigger and observation to happen.

Suppose that a module M has 100 swergs of latent work (𝑊𝐿). An average developer,

Jack, applies 20 swergs (𝑊𝐷) to improving M. You would think that M now has 80

swergs of latent work, but while Alf worked, he created new bugs, so M now has 85

swergs of latent work. It’s useful to think of the difference between the expected value

and the true value as an increase in the entropy E of module M.

(2) ∆𝐸 = 𝑊𝐿2 − (𝑊𝐿1 − 𝑊𝐷) = 85 − (100 − 20) = 5

From this we can define the entropy of a module to be the amount of work needed to

fix all the latent bugs in that module. This definition is intuitively close to

thermodynamic entropy since disorder breeds bugs.

Next, we need to define a temperature. Temperature is a property of the module.

Conceptually, a hot module is difficult to modify. Any change to that module will

create lots of new bugs and increase the entropy. A cool module is easier to modify. To

be consistent with our conceptual understanding, I will define the module

temperature:

(3) 𝑇𝑀 =
∆𝐸

𝑊𝐷

where ∆𝐸 is the increase in entropy in the entire system (not just module M), and 𝑊𝐷 is

the developer work applied to the module. This definition depends on an average

developer making an average change, and of course that never happens, because in

your organization, all the developers are above average.

One of the factors that determines the temperature of a module is the amount of

coupling of that module to other parts of the system. In a hot module, a single software

change can greatly increase the entropy. That is because in a hot module, code often

has convoluted relationships to other parts of the system. That one change can cause

(or expose) new bugs in unchanged parts of the system. The entropy doesn’t just add,

it multiplies. This is sometimes called, “Software Rot”, a common term for the

phenomenon that, over time, parts of the system, that previously worked just fine, start

to fail even when they have not changed.

In a cool module, software changes are isolated and do not propagate entropy beyond

the boundaries of the module where the change is made. When new code is added,

entropy is increased, but it doesn’t multiply. In a cool system, software rots much more

slowly.

Let’s look at the extremes. When entropy increase is greater than the developer work

applied, you have a poison module. Everything you do to it makes the system worse.

Perversely, high temperature modules are both the ones you want to change the most,

Essentials of Software Development for the Post-Agile World

17

and are the hardest to change. They become extremely stable because no developer will

touch that module, and you are stuck with the current implementation.

On the other hand, you can imagine changes that decrease the system entropy by more

than the effort applied – a module with a negative temperature. These changes are rare,

and modules with negative temperature don’t last very long. Usually, they are

removed from the system by re-architecting parts of the system to remove inter-

module coupling, or re-writing a critical module that has had a lot of problems. I fondly

remember the deep sense of satisfaction I experienced when one of these changes

worked.

Fixing the bugs found by testing can decrease the entropy of a system, but testing can’t

reduce the temperature of the module. If the module is hot, once you’ve recovered from

one change, then the next change you make is likely to introduce new bugs. The only

way to reduce the temperature of a module is to improve the architecture to isolate the

effects of changes.

There are no laws of software thermodynamics, but there are tendencies that parallel

the laws of classical thermodynamics.

0. A software system won’t come to thermal equilibrium, but a hot module is
likely to increase the temperature of the modules it interacts with.
1. Software is not a zero-sum game. All the work that goes into making
software creates value in the software system. The value of the software is much
more than the cost of the swergs that went into it.
2. The entropy of a system always increases. That’s because the amount of code
in a system always increases. Those rare changes that remove code are offset by
many more changes that add code. Less code may have fewer bugs, but most
bugs are caused by writing not quite enough code.

This is not a law. It is possible to reduce the entropy of a system, but it takes
work. It is much easier to design a cool system that will have low entropy than
to fix a hot system that has high entropy.
3. The latent work of a software system never reaches zero. Changes in the
requirements cause changes in the code, which create new bugs. Software is
only stable when it’s dead.

1.3.3 The Complexity Model of Software Development

The Complexity Model of software development has served me well over the past

twenty years. It is simple enough that most people can quickly understand it, yet rich

enough that it can be applied to a wide range of problems.

Essentials of Software Development for the Post-Agile World

18

Software problems can be characterized by the number of tasks it takes to solve a

problem and the difficulty of the tasks. I will divide this space into four quadrants.

1.3.3.1 Trivial Problems

The lower-left quadrant, problems that can be solved with a few easy tasks, is named

Trivial. It’s a nice place to work, but it doesn’t pay very well. However, it is the goal of

software development to transform a problem from the other quadrants to the Trivial

quadrant. When people talk about “Ease of Use” for a software product, they are really

evaluating how close to the origin did the product get.

For example, consider fingerprint security for the iPhone®.

Once it is set up, the use model is trivial – put your finger on the button. But behind

the scene, there’s a lot of stuff going on. The sensor outputs an array of pixels. Then

image processing transforms the pixels into something that represents the fingerprint.

And then the fingerprint must be matched to the master fingerprints you set up. And

if it finds an acceptable match it lets you use the phone.

Essentials of Software Development for the Post-Agile World

19

On the other hand, the setup of the master fingerprints is a process that takes quite a

few tasks. You must follow instructions and respond to arcane feedback before the

phone accepts your master fingerprint. This process is tedious and thus, leads us to the

next quadrant in the model.

1.3.3.2 Detailed Problems

The lower-right quadrant, problems with lots of easy tasks, is named Detailed. When

I first came up with this model, I called it Tedious because it represents the kind of

problem I despise. But then I realized that any organization needs people to solve these

problems and that, indeed, there are people who love solving these problems.

Detailed problems are solved in two ways. Automation transforms the Detailed

problem into a trivial problem. Brute force solves the problem by applying lots of time

and/or resources. Automation is the preferred approach if you are going to encounter

the same problem often. But don’t discount brute force; if you’re only going to

encounter this problem once, then brute force may be both the most efficient and most

expedient way to solve the problem. (“There is no such thing as ineffective brute force,

only insufficient.” – attributed to Lou Scheffer) And even for problems you plan to

automate, using the brute force approach at first may help you understand how to

automate the process.

Consider the problem of the Postal Service. They need to deliver millions of items each

day. They use automation for a lot of the processing, but the final mile is still served by

thousands of postal workers who physically deliver the mail.

Essentials of Software Development for the Post-Agile World

20

1.3.3.3 Challenging Problems

The third quadrant, problems with a few difficult tasks, is named Challenging. This is

the reason I became a software developer in the first place. This is the realm of the NP-

complete problem, of the problems that are closely tied to mathematics, of statistical

analysis, of numerical analysis, of optimization, of cryptography. This is the realm of

the PhD dissertation, of the technical journals, of professors who have dedicated their

lives to one Challenging problem.

A Challenging problem is solved by transforming it into one or more Detailed or Trivial

problems. The key to the solution is invention. The solution may be in the literature, or

it may never have been encountered before. The solution may require applying

techniques from many sources. The best software developers for these problems

understand a wide range of techniques, and are willing to experiment with these

techniques until they find the combination that works best for the problem.

Consider Alan Turing’s problem with the Enigma code. Let’s assume that I needed to

solve that problem today (so I don’t have to build a computer from scratch). I might

try the brute force technique first to understand how bad it is. I would read papers on

cryptographic cracking. I would try a few of the techniques in the papers. I would sleep

on it and sometimes wake up with new ideas. And eventually, I would have an

acceptable solution. I might be able to improve the solution over time.

An important characteristic of Challenging problems is that they are inherently

unpredictable. Before starting on the Enigma decryptor, I could fairly accurately

predict how long it would take to develop the code to try to decrypt the message. But

I would almost certainly be hopelessly optimistic about any guess about when the code

would succeed at decryption. And after the acceptable solution is in place, I would be

hopelessly wrong about a prediction for when the code would run ten times faster.

There is a later chapter dedicated to a discussion of Challenging Problems.

Essentials of Software Development for the Post-Agile World

21

1.3.3.4 Complex Problems

The final quadrant, problems with lots of difficult tasks, is named Complex. Most

problems worth solving fall into this quadrant. No one person can solve a Complex

problem – it takes a team. To make the team effective requires two things: an

architecture that provides a framework for breaking tasks into manageable chunks,

and a software development methodology that makes sure that when those chunks are

completed, they will work within the whole.

The essence of software leadership is the ability to develop architectures and

methodologies. These two aspects of software development are co-dependent. The best

methodology in the world will fail if the architectural underpinnings aren’t strong

enough to hold it up. The best architecture won’t get off the ground without a solid

methodology to make sure the pieces can come together to form a useful whole.

There is a later chapter dedicated to Architecture. Most of the rest of the book discusses

various aspects of Methodology.

1.4 The Geodesic Manifesto

Unless you studied topology, you probably have only heard the word ‘geodesic’

applied to Buckminster Fuller’s dome. In topology, a geodesic is the shortest path

between two points in a generalized space. On a Euclidean plane, it is a line segment.

On the surface of a sphere, it is a segment of a great circle. The geodesic from

Sacramento to Reno, given the constraint of driving an automobile, goes through the

Donner Pass. Dijkstra’s algorithm can find a geodesic in a graph, the shortest path

between two nodes. In software, the geodesic is a metaphor for the way that a

productive software team starts with nothing but a twinkle in someone’s eye, and ends

up with high-quality working software.

Essentials of Software Development for the Post-Agile World

22

The Geodesic Manifesto describes the Geodesic Philosophy at a high level. Like Agile,

it aims to help software development teams create quickly high-quality software in a

world where requirements are vague, incomplete and changing. Whereas the Agile

Manifesto (discussed in the next chapter) focuses on what not to do, the Geodesic

Manifesto describes what to do to achieve your goals. Agile’s negative views of

process, documentation, planning and leadership have led many development teams

into one-way, dead-end tunnels. I hope that the Geodesic Manifesto can free them to

use the ways that work, even if they’re not “Agile.”

This section presents the Manifesto, followed by the annotated Manifesto. On first read,

you may want to skip to the annotated version that includes brief discussions with

links to the parts of the book that expand on the key concepts.

Essentials of Software Development for the Post-Agile World

23

THE MANIFESTO OF THE GEODESIC PHILOSOPHY OF SOFTWARE DEVELOPMENT

ASSUMPTIONS
We assume these truths:

• Our goal is to create software-based solutions that do what the user wants in the way
the user expects.

• Requirements are an inaccurate abstraction of what customers and users want.
Requirements cannot be known completely and will change even after they are known.
The only true specification of the solution is working software.

• People who develop software have a wide range of ability, motivation and
temperament.

• Our problem is to help those people overcome software’s inherent difficulties:
complexity, opacity, vulnerability, rigidity, and its chaotic nature.

PRINCIPLES
To overcome the limitations of requirements:

• We have frequent interaction with customers and users.

• We frequently deliver working software and actively seek feedback.

• Developers must learn to think like their customers.

To overcome the limitations of people:
• We build synergistic teams that improve the performance of every individual.

• We establish a methodology that fosters creativity and encourages interaction.

• We encourage frequent and open communication among team members.

To overcome the inherent difficulties of software:
• We seek out change from as many sources as possible.

• We plan for change, and change the plan when necessary.

• We embrace change through constant measurement, analysis and improvement of the
software and methodology.

• Developers strive for the highest level of technical excellence and assume responsibility
for quality.

PILLARS
Success depends on:

• Leadership that:
o Creates a vision for the solution we’re trying to create
o Organizes the development team to maximize the contribution of each member
o Develops dynamic plans that answer three questions: When will it be done? What

will it contain? What do I do next?
o Establishes processes and controls that maximize productivity and creativity

• An architecture that organizes the solution into modules and their interactions that is
modular, flexible, consistent and sufficient.

• A methodology that defines common processes and controls that foster innovation,
empower the development team to create the best solution, and maximize efficiency
while minimizing risk

• A decision-making ethos to guide us as we change the vision, plan, architecture and
methodology.

Essentials of Software Development for the Post-Agile World

24

1.4.1 The Annotated Geodesic Manifesto

THE MANIFESTO OF THE GEODESIC PHILOSOPHY OF SOFTWARE DEVELOPMENT
❖ Now that’s a pretentious title!

ASSUMPTIONS
We assume these truths:

• Our goal is to create software-based solutions that do what the user wants in
the way the user expects.
❖ The Manifesto primarily addresses software, but software is often part of a

larger solution that may include hardware, data and other stuff.
❖ The Quality chapter defines high quality software with this statement: “High

Quality Software does what the user wants in the way the user expects.”

• Requirements are an inaccurate abstraction of what customers and users
want. Requirements cannot be known completely and will change even after
they are known. The only true specification of the solution is working
software.
❖ See the Requirements section earlier in this chapter.

• People who develop software have a wide range of ability, motivation and
temperament.
❖ The Organization section of the Software Manager chapter discusses these

traits of software developers.

• Our problem is to help those people overcome software’s inherent
difficulties: complexity, opacity, vulnerability, rigidity, and its chaotic
nature.
❖ These are the five Yin traits from the Yin-Yang Model.

PRINCIPLES

To overcome the limitations of requirements:
• We have frequent interaction with customers and users.

❖ The Agile Manifesto’s principles recommend daily interaction with “business
people”, whom I refer to as “customer advocates”.

• We frequently deliver working software and actively seek feedback.
❖ The chapters on Methodology, starting with Common Processes focus on

software delivery.

• Developers must learn to think like their customers.
❖ There is a brief discussion of how to think like a customer in Think Like a

Customer
To overcome the limitations of people:

• We build synergistic teams that improve the performance of every
individual.
❖ The Agile Manifesto talks about self-organizing teams. But self-organization is

not enough. A team needs leadership and direction to make the transformation
from a bunch of people who work together into a team that can move
mountains. When that happens, it’s a wonder to watch.

Essentials of Software Development for the Post-Agile World

25

❖ In Teamwork, I present four values essential to synergistic teams: Mutual
Success, Mutual Ownership, Common Understanding and Continuous
Improvement.

• We establish a methodology that fosters creativity and encourages
interaction.
❖ The chapter Common Processes discusses what processes are needed for an

effective methodology.
❖ See the Methodology Frameworks chapter for examples of high-agility

methodologies.

• We encourage frequent and open communication among team members.
❖ Organize teams and office space to maximize communication efficiency.
❖ Avoid unnecessary documentation; write only what’s needed for the use and

development of the software.
❖ The formality of communication must increase with physical and

organizational distance.
To overcome the inherent difficulties of software:

• We seek out change from as many sources as possible.
❖ Changes come from customers, users, testing and the creativity of the

development team.

• We plan for change, and change the plan when necessary.
❖ We need a plan, but only if it can adapt to the changing environment.

• We embrace change through constant measurement, analysis and
improvement of the software and methodology.
❖ The continuous improvement cycle – measure, analyze, implement – forms the

core of every Agile methodology. Lean thinking provides a framework for doing
that.

• Developers strive for the highest level of technical excellence and assume
responsibility for quality.
❖ Technical excellence is one of the principles of the Agile Manifesto.
❖ Write code that is easy to understand, easy to extend, and easy to change.
❖ In the Quality chapter I propose that developers must assume responsibility for

quality because they are the only ones who can affect it. Validators identify
problems, but developers created the problems.

❖ Quality is achieved through effective development processes that include code
review, high coverage test development, frequent measurement, and quick
feedback about problems.

PILLARS

Success depends on:
• Leadership that:

o Creates a vision for the solution we’re trying to create
❖ The Vision section of the Software Manager chapter discusses how to create

and communicate a vision.
o Organizes the development team to maximize the contribution of

each member

Essentials of Software Development for the Post-Agile World

26

❖ The Organization section of the Software Manager chapter discusses
management of the team.
o Develops dynamic plans that answer three questions: When will it

be done? What will it contain? What do I do next?
❖ The word ‘dynamic’ implies that the plan needs to change as the project

evolves. We can’t expect to plan once and then execute. Plan for change and
change the plan when necessary

❖ The Agile Manifesto devalues planning and has given a lot of lazy managers
the excuse to avoid it. But planning is necessary because at any point, you need
to be able to answer these three questions. See the section of the Software
Manager chapter.
o `

❖ See the Common Processes chapter and the Control section of the Software
Manager chapter.

• An architecture that organizes the solution into modules and their
interactions that is modular, flexible, consistent and sufficient.
❖ The Architecture chapter briefly discusses how to think about architecture.

These five attributes help distinguish good architectures from bad.

• A methodology that defines common processes and controls that foster
innovation, empower the development team to create the best solution, and
maximize efficiency while minimizing risk
❖ The Methodology Frameworks chapter provides examples and analysis of

common methodologies.

• A decision-making ethos to guide us as we change the vision, plan,
architecture and methodology.
❖ The primary purpose of this book is to help you build an ethos – a guide to tell

right from wrong in software development.
❖ Decision making is discussed in the Leadership section of the Software

Manager chapter.
❖ As the Agile Manifesto states, ”At regular intervals, the team reflects on how

to become more effective, then tunes and adjusts its behavior accordingly.”

1.5 Graphic Details

I occasionally use concepts from graph theory to describe parts of the software

development process. Since I realize that some of you are unfamiliar with graph theory,

this section is a very basic introduction with the definitions of the terms I use. If you

are confident in your knowledge, you can skip this section, but you’ll miss all the graph

theory jokes.

Two nodes, Neil and Sheila, walk into a bar. Why didn’t Sheila duck?

A graph is a set of nodes (sometimes called vertices, but not by me) and edges that

represent the relationship between nodes. When using a graph, the nodes will

Essentials of Software Development for the Post-Agile World

27

represent something, like the corners of a polygon or the modules in a software

architecture. The edges may also represent something, like the edges of a polygon or

the dependencies in a software architecture. In directed graphs, edges have direction –

they point from one node to another. In an undirected graph, edges just represent a

relationship without the notion of from-to. The name, “undirected graph”, is distinctly

unimaginative, but you can see why they didn’t call it the “any-which-way graph”.

A graph has a loop (mathematicians prefer ‘cycle’) if you can leave a node and find

your way back to the same node without repeating any edges.

The bartender says, “You’re looking a little edgy.” Sheila replies, “My edge points to

him and his edge points to me. I’m feeling a little loopy.” Neil says, “That’s a cyclical

argument.”

Tree Example

A tree is a directed graph where every node has at most one input edge. There is one

root node of the tree that doesn’t have any inputs. The outputs of a tree node connect

to the child nodes. Nodes without any children are often called leaf nodes. If you draw

it carefully, a tree looks like an oak, with all the nodes branching from the root. If I

draw it, you can think of it more as a hydroponic tree, because I always draw the root

node at the top.

Essentials of Software Development for the Post-Agile World

28

A Portion of My Family “Tree”

There’s a special kind of directed graph that has no loops. It’s called a Directed Acyclic

Graph, or DAG. Your family tree is not a tree; it’s a DAG with two kinds of nodes. One

node type represents an individual, Uncle Leroy; and the second node type represents

a union that produces children, Uncle Leroy married Aunt Doris and they had four

children. We know it’s a DAG because a loop would mean that you are your own

ancestor, which can only occur in bad time travel science fiction.

“Do you have any children?” asked the bartender. “Just one boy,” said Sheila. “We call

him Dagwood.”

There are two common ways to search a graph: depth-first and breadth-first.

Essentials of Software Development for the Post-Agile World

29

Depth-First Search Example

In depth-first search, you start from the top node and search successor nodes from left

to right. If the successor node has not been processed, then search its successor nodes.

Once all the successor nodes have been processed, or there are no successor nodes, then

process that node. In the example graph above, the nodes are processed in the order

shown by the red lines. The advantage of depth-first search is that when you process a

node, you know that all its successors have already been processed. One of the uses of

depth-first search is to find the longest path from the start node to any leaf node.

“Dagwood is in the navy, specializing in depth-first charges,” said Neil.

Breadth-First Search Example

In breadth -first search, you start from the top node, process it, and then put all its

successors in a queue. Take the node from the head of the queue, process it, and then

put all its successors in the queue, skipping the ones that have already been processed

or are in the queue. In the example above, the nodes are processed in the order shown

by the red lines. One of the uses of breadth-first search is to find the shortest path from

the start node to any leaf node.

Essentials of Software Development for the Post-Agile World

30

“You’ve gained a little weight, dear,” said Neil. “Maybe you should stand a little

taller.” “Breadth first, dear,” replied Sheila.

I didn’t say they were good jokes.

1.6 Dramatis Personae

Software development has a large cast of characters. In this section, I list the characters

and the names I use for them throughout the book. Beware that in some organizations

these names mean something else.

Software Developer – A person who writes software for a living. Also known as

programmer, coder, hacker, software engineer, computer scientist, and many other

names.

Software Validator – A person who verifies that software does what it’s supposed to.

Software must be tested to validate that it delivers the intended reliability and

functionality. Developers are responsible for some of the testing, but independent

system testing is done by the validation team. I use this term instead of the more

traditional “quality assurance” (QA) because over time QA acquired a bad reputation

as a job where failed developers ended up.

Architect – A developer who is responsible for maintaining the integrity of the

architecture.

Tech Writer – a person who writes product documentation. Users require

documentation to effectively use the product. The required amount and quality of

documentation depends on many factors like the complexity of the product, the

sophistication of users and level of support that’s available.

Manager – a person who manages a group of software developers. This person is

responsible for making sure the software gets done with all the required features, on

the committed schedule, and with high quality. The manager is also responsible for the

welfare of his team.

User – a person who uses the software.

Customer – the person (or entity, if it’s a company or other organization) who pays for

the software. Sometimes this is the user. More often, this is an entity who provides the

software to the users. For example, if I buy PhotoShop™, I am both the user and the

customer. If IBM buys photoshop, IBM is the customer. There will be many users

within IBM who have no idea how much, or under what terms, IBM paid for

PhotoShop.

Essentials of Software Development for the Post-Agile World

31

Customer Advocate – someone within your organization who can speak for the

customer. This might be someone in marketing, sales, or support.

Executive – someone up the chain of management from the Manager, typically the

Manager’s boss’s boss or higher. Also known as upper management.

Knobs, Inc. – a purveyor of door handles that have well known requirements and never

need an upgrade.

1.7 Key Concepts

Requirements

• Requirements are an abstract specification of what the software should do.

• Requirements aren’t required; they are guidelines for capabilities that have a
degree of necessity.

• Requirements cannot be known completely and will change over time.

The Yin-Yang Model

• The Yin-Yang Model presents five pairs of good vs. evil traits of software:

Yin Yang

Complexity Simplicity

Opacity Visibility and Clarity

Vulnerability Reliability

Rigidity Flexibility

Chaos Repeatability

Software Thermodynamics

• The Software Thermodynamics Model is an analog to classical
thermodynamics that attempts to define entropy and temperature of
software.

• Entropy represents the development work that is wasted because it creates
bugs or needs to be redone.

• The temperature of a module represents the tendency of work done on that
module to create entropy. Work done on low temperature modules tends to
create little entropy, while work done on high temperature modules tends to
create a lot of bugs, and therefore a lot of entropy.

Essentials of Software Development for the Post-Agile World

32

Complexity Model

Complexity Model

• The Complexity Model partitions software problems into four quadrants
based on the number of tasks required to solve the problem, and the
difficulty of those tasks.

• Complex problems are solved with a combination of Architecture and
Methodology.

The Geodesic Manifesto

• The Geodesic Manifesto presents the key concepts that will be addressed in
this book.

• It presents a way to achieve the agility that organizations want, together
with the predictability and quality that they need.

Essentials of Software Development for the Post-Agile World

33

1.8 About the Author

Bob with the Birds

Bob Erickson was born and raised in northern Minnesota, where he walked to school

in forty below zero weather uphill and against the wind in both directions. He received

a BA in Physics and Electrical Engineering from Rice University, and an MSEE from

Stanford. After a few years as a hardware designer at HP, he wandered into the

Electronic Design Automation industry, working for Silicon Compilers and with

Mentor Graphics after the acquisition. He alternated between management roles and

development roles for many years before becoming VP of Engineering at startup

Synplicity and later VP of Software at startup Tabula. He returned to the Synplicity

group after its acquisition by Synopsys, where he worked mostly as a software

developer and architect. He was named Synopsys Distinguished Architect before his

retirement in 2017.

Bob welcomes feedback and questions. Contact Bob at bob@geodesicManifesto.com.

mailto:bob@geodesicManifesto.com

